The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions.
نویسندگان
چکیده
The interaction of water vapor with hydrophobic surfaces is poorly understood. We utilize graphene templating to preserve and visualize the microscopic structures of adsorbed water on hydrophobic surfaces. Three well-defined surfaces [H-Si(111), graphite, and functionalized mica] were investigated, and water was found to adsorb as nanodroplets (∼10-100 nm in size) on all three surfaces under ambient conditions. The adsorbed nanodroplets were closely associated with atomic-scale surface defects and step-edges and wetted all the hydrophobic substrates with contact angles<∼10°, resulting in total water adsorption that was similar to what is found for hydrophilic surfaces. These results point to the significant differences between surface processes at the atomic/nanometer scales and in the macroscopic world.
منابع مشابه
Size effects on water adsorbed on hydrophobic probes at the nanometric scale.
Molecular dynamics simulations of liquid water at ambient conditions, adsorbed at the external walls of (n,n) single-walled armchair carbon nanotubes have been performed for n = 5, 9, 12. The comparison with the case of water adsorbed on graphene has also been included. The analysis of Helmholtz free energies reveals qualitatively different ranges of thermodynamical stability, eventually starti...
متن کاملMolecular-scale Hydrophilicity Induced by Solute: Molecular-thick Charged Pancakes of Aqueous Salt Solution on Hydrophobic Carbon-based Surfaces
We directly observed molecular-thick aqueous salt-solution pancakes on a hydrophobic graphite surface under ambient conditions employing atomic force microscopy. This observation indicates the unexpected molecular-scale hydrophilicity of the salt solution on graphite surfaces, which is different from the macroscopic wetting property of a droplet standing on the graphite surface. Interestingly, ...
متن کاملIn situ FTIR study on the formation and adsorption of CO on alumina-supported noble metal catalysts from H2 and CO2 in the presence of water vapor at high pressures.
The formation and adsorption of CO from CO(2) and H(2) at high pressures were studied over alumina-supported noble metal catalysts (Pt, Pd, Rh, Ru) by in situ FTIR measurements. To examine the effects of surface structure of supported metal particles and water vapor on the CO adsorption, FTIR spectra were collected at 323 K with untreated and heat (673 K) treated catalysts in the absence and pr...
متن کاملInterface-Induced Ordering of Gas Molecules Confined in a Small Space
The thermodynamic properties of gases have been understood primarily through phase diagrams of bulk gases. However, observations of gases confined in a nanometer space have posed a challenge to the principles of classical thermodynamics. Here, we investigated interfacial structures comprising either O2 or N2 between water and a hydrophobic solid surface by using advanced atomic force microscopy...
متن کاملBubbles, Cavities, and the Long-Ranged Attraction between Hydrophobic Surfaces
Measurements of the forces in water between neutral hydrophobic surfaces prepared by covalent modification of glass are presented. The surfaces are stable under a variety of conditions including high temperature, high salt concentrations and with added ethanol. The forces between these surfaces have been studied under all of these different conditions. In water the force is attractive at very l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 11 12 شماره
صفحات -
تاریخ انتشار 2011